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Abstract—A long circular cylindrical shell subjected to external pressure may collapse through the
development of a propagating buckle. In this work a method has been developed for the theoretical
prediction of the smallest propagation pressure in the case of path-dependent material descriptions.
The method is illustrated by comparing predictions of the propagation pressure based on J, flow
theory with predictions based on J, deformation theory for two different radius to thickness ratios.
The modelling is based on thin shell theory and small strain approximations. allowing for large
deformations. Results for two different non-lincar bending strain measures are compured, and the
etfect of using a finite strain J, flow theory is investigated.

INTRODUCTION

An cxternally pressurized tube may collapse in a mode in which a buckle will propagate
through the entire length of the tube leaving it plastically collapsed (Fig. 1).

Such a collapse has occurred along submarine pipelines. Of particular interest is the
smallest propagation pressure P, at which the velocity of the transition front tends to zero.
A theoretical prediction of this pressure in Palmer and Martin{l], P/a, = (h/R)*n/4, bascd
on a plastic hinge model somewhat underestimated the experimental results. An exper-
imental study of the problem and related aspects —like buckle arresting —was carried out
by Mesloh ef al[2] and Johns ef al.[3]. Kyriakides and Babceock{4 8], Kyriakides and
Arikan[9], Kyriakides and Youn[10] and Kyriakides e el [11] carried out detailed exper-
imental studics of several aspects of the propagating buckle problem and have performed
theoretical analyses of the large deformation behaviour of inclustic rings under different
extenior conditions,

Finally, Chater and Hutchinson[12] linked the ring analysis and the determination of
P,. They argued that one expects every point in the shell material to experience a stress
history close to proportional stress development as the transition front passes by, For this
reason, deformation theory will essentially deseribe the inelastic material behaviour, They
considered the work balance for steady-state propagation under quasi-static conditions at
pressure P,
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Fig. 1. (a) Mode of collapse for circular cylindrical shell under external pressure, with (b) charac-
teristic cross-sections and (¢) gencrators lying in the vertical plane of symmetry.
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in which A4, and A4 denote the area reductions of ring segments far behind and far in
front of the transition. Due to the conservativeness of the problem when using deformation
theory, the stress work AW absorbed by cach segment of unit length can be determined by
any path bringing the ring from state U to state D. For a tube of infinite length described
by deformation theory. these two states are plane strain ring solutions. Now Al can most
easily be determined from pure plane strain ring deformation as

AW
Al = j p(A4) d(AA). (2)

Mg

Combining eqns (1) and (2) gives a graphical interpretation of P, on the pressure vs arca
reduction curve for a ring under plane strain conditions as the level at which the areas
above and below this line are equal (Fig. 2).

This Maxwell line construction has been used for other problems concerning pro-
pagating instabilities in Chater er @/.[13] and in Hutchinson and Neaic[14].

Comparison with experimental results in Refl [12] and in Kyriakides er ol {13] shows
that the method yields accurate results, especially for the thinnest tubes. This is not surpris-
ing, since in Refs [12015] a small strain, thin ring model is used. Some improvement of the
predictions could be expected #f AB in eqn (2) was determined from the exact three-
dimensional theory using a finite strain deformation theory. [tis believed that such improve-
ments of the modelling are not relevant until it has been clarified how accurately the
deformation theory desceribes the material behaviour,

The purpose of the present work is to develop a method of predicting P, using a path-
dependent matertal model. This requires a description of the complete behaviour during
the transition from the unbuckled to the collapsed zone, The modelling is based on thin
shell approximations, using small strain material models. As mentioned in Ref, [12], the
deformation theory material model must be improved at some level of approximation. The
transition front steepens with decreasing radius to thickness (R/4) ratios and at propagation
pressures above £, which result in large deviations from proportional stressing.

A complete deseription of the shell behaviour is also required to study the design of
buckle arrestors and the initiation of propagating buckles from the local damage of a
pipeline.

The method is iltustrated by comparing predictions of Py based on flow theory with
predictions based on deformation theory for two shells of different radius to thickness
ratios. These comparisons demonstrate the influence of non-proportional stress history,
showing that agreement between the predictions confirms the validity of the deformation
theory material description.

Results for two different bending strain measures are compared. I the fundamental
small strain assumptions are not violated the results should coincide. Therefore, any dis-
agreement gives an impression of the influence ol terms that thin shell theory under small
strain assumptions do not include.
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Fig. 2. (a) Graphical construction of £, from the load vs area reduction curve for a ring under plane
strain conditions, with (b) typical stages of deformation indicated.
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In the cases considered the strains off the middle surface become quite large. By
comparing with results based on a finite strain material model, one gets an impression of
the limitations of the small strain material models.

BASIC EQUATIONS

In the following a total Lagrangian description of the fundamental equations is
adopted. in which the initial body, with volume V and surface S, is used as a reference.
Equilibrium of the deformed state is ensured through fulfilment of the principle of virtual
work. which, in the absence of body forces, takes the form

f o on, dV = f T'5u, dS 3
¥ A

where 7' denotes the surface tractions and u; the displacements relative to the reference
coordinate system. The Lagrangian strain tensor 7, ts given by

B = 'E(ij“‘!lu} 4

in which G, and g,; are the covariant components of the metric tensors in the deformed
and undeformed configurations with determinants G and g. In egqn (3) 17 denotes the
contravariant components of the Kirchhofl stress tensor, related to the Cauchy stresses
o' by

= /(Glg)a", (5)

The principle of virtual work is expunded about the current state-—not necessarily in
cquilibrium--giving to lowest order

J [#/3n,+1" 5, ] dV = j 7' 5u, dS— {J 'y, dV—-f T Su, dS} (6)
¥ Ad 1 N

where () denotes an incremental quantity. If i = pfu] is a prototype of n,; with nfu] as a
non-lincar operator on u,, 3y denotes the part of glu,+ du,] which is linear in du,, and 3 the
part of nlw,+4,+6u] which is lincar in both &, and du,. Here, di, denotes any virtual
displacement field fulfilling the kinematical boundary conditions.

In the following we set 1/ = ¢* since the relutive volume change /(G/g) — 1 is entirely
due to clastic strains which, by assumption, are small.

The material models to be considered are the classical small strain deformation theory
and flow theory with isotropic hardening. In incremental formulation

6" = L”“’iu (7N

the tensor of instantancous moduli L7% takes the following form in the case of deformation
theory:

E, | I ) v 3 EJE —1 sigt
Lk = 2 {» kg 4 gl g gt T Y
i, P IO 5 9 S EE (2 o ®

Here, E, denotes the secant modulus on the measured uniaxial stress—strain curve, £, is the

+ Latin letters for indices assume the values [, 2 and 3, while Greek letters assume the values | and 2 only.



N H. M. Jensex

tangent modulus and v, = vE,;E+ (1 — E/E). The stress state is related to the uniaxial
stress—strain curve through the effective stress o,

G = [dug 575V )
The deviator stress tensor is given by
[

s =0" =g gyt (10)

In the case of flow theory the elastic—-plastic moduli takes the form

Lu/\“/ = _E;_ {l

‘ad

) ; v E/E -1 .\‘".s‘“?
w1 il ik i ki [}
. ( + _ i . .7 ]l
[ (g " +a'g") 1 2\,51 g IZE,.E‘ (1=21)3 4! 5 (1

with

I, if o.=0lp. and d,>0
X (12)

0. otherwise.

In the fintte strain generalization of eqn (1), relating the Jaumana rate of the Cauchy

v - . . - . - . N
stress 6" = 6"+ G* o i+ G''o™ 1y, to the strain rate 4, the components of ¢, are replaced
by G, inegns (9) (1) [16, 17]. In this case, £, is the tangent modulus on the uniaxial true

stress vs nataral strain curve,

SHELL EQUATIONS

A simiple description of the strain variation through the shell thickness is adopted in
accordance with the Kirchhott Love hypothesis

¥ -
Wy —d ) ~ ~((?x{f - fl;;f)

il

M
(%
i, = 0.

It is assumed that the thickness multiplied by the maximum principal curvature is small
compared with unity during all stages of deformation. In eqns (13), ¢,y denotes the metric
tensor and o, denotes the curvature tensor of the undeformed middle surtuce, {7) denotes
the corresponding quantitics on the deformed middle surface, and o is the coordinate ulong
the normal to the middle surface. Furthermore, it is assumed that

o't = 0. (14

Combination of eqn (7) and ¢’ = 0 gives
iy = —L“Z”P},,;/LH”. (15)
On the circular eylindrical middle surface with in-plane coordinates (v. Rep) depicted
in Fig. 3, w. r and wdenote the axial, circumferential and normal displacements, respectively.
The components of the membrane strain tensor £y = Hd,,—a,,) (see Niordson[18]

for the general expression) take the following form, using { )" = &( )/Cxand ( )* = 0 )i

E . =u+ %[(u'):%—(l"):—{»(w'):]
E, = Hurk, —ck,+wk ] (16}
E.s = t*(R=w)— Rwdow*+ ol u’ + %) +(0%) + (w*)]
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Collapse of hydrostatically loaded cylindrical shells

Fig. 3. Coordinate lines on the midsurface of a circular cylindrical shell with radius R, length L and
thickness A.

and the components of the curvature tensor take the form (see Appendix)

dyy =u'n +0"n,+w'n
dis = u*n, —k\n,+k'\n (n
dys = w**n, —kyn,+kn.

Here, the following abbreviations are introduced :

k=141, ki=w—~R—p* ki=u*+4r

kJ:k?‘{"kg, ks-:,\?-"k:

(18)

The non-dimenstonal components of the normal to the deformed middle surface are given
by

ny=a kb wk ]
my=a lutw =k ko (9

n=a - -k k)

Tncgqns (17) it is noted that the terms multiplicd by the components of the normal are all
lincar in the displacements or their denvatives.

In the analysis, the pressure is applicd perpendicular to —and measured per unit area
of - the deformed middle surface. By this construction, changes in the direction of the
normal to the outer surface in comparison with the middle surfuce normal are neglected.
consistent with the Kirchhoff-Love hypothesis. Arca changes of the outer surface compared
with the middle surface are also neglected, consistent with the assumption that g remains
small during deformation, Here, § is the maximum principal curvature.

These refations serve as a basis for the numerical solution of egn (6), for which the
displacements are chosen as independent variables.

NUMERICAL METHOD

Numerical results are obtained representing the axial variation of u. v and w by
Hermetian cubics (see for instance Epstein and Murray[19]) within a number of subdivisions
of the interval 0 < x < L. Duc to the experimentally observed symmetries shown in Fig.
1(b), only a quartersection of the tube need be considered. This circumferential variation
in the interval 0 < ¢ < /2 is represented by functions fulfilling the symmetry conditions

W=uls =y =0 =wl=wt, =0 (20)
Bifurcations away from this double symmetric mode are not considered. From the

experimental results of Ref. [9] such bifurcations do not seem to be relevant at load levels
close to the smallest propagation pressure P,. With the notation
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u v | un(¥)g,(®)
rp =3 e ()h(d) (2h

et
A=

W w,(X)g,. ()

the following two sets ot functions have been compared :

g (@) =cos 2(n—1)p. h,(P) = sin 2ng A
3 2 o]
glp)=1: g = (%b) [n+i—nt§]. n> 1

b6V 9 ntt (:3)
h(d) = <i‘¢’> [n -~ w] (li”__
n b4 "

in order to study the convergence speed for increasing N in eqn (21). In the cases considered.,
eqns (22) are normally better choices than eqns (23).

The numerical integration of eqn (6) is performed with 4 Gauss integration points in
cach axialelement, and typically 16 Gauss integration points in the circumferential direction,
Through the thickness, Simpson integration is performed using 13 points.

The deformation history is controlied by specifying increments of w at ¢ = #/2. The
physical situation we wish to simulate is a volume-controlied experiment, since the pressure
reaches several extrema during the deformation history. It is inconvenient to prescribe
the volume enclosed by the tube. Since w(x, n/2), where x s suitably chosen, increuases
monotonically for an increasing volume change, it is essentially the same thing to prescribe
this quantity. The normal deflection is spectfied using the Rayleigh Ritz method, described
i Rel [17].

The principle of virtual work, eqn {6), is solved iteratively at cach increment with the
tensor of clastic plastic moduli, eqn (1), kept fixed. I deformation theory is invoked, eyn
(8) cun be regencrated at cach iteration. The configuration-dependent load is inctuded as
described in Bathe er ¢/ [20] to avoid non-symmetric contributions to the stiffness malrix,
Results are compared for the two bending struin measures Koy = o,y —d g und K g introduced
by Pictraszkiewicz[21], where

Koy = dy(1 + E) — J(@la)d,. (24)

The results based on K, are obtained by a Newton-Raphson iteration scheme at cach
increment using accurate derivatives 3K, and 3K,4. The results based on K, are obtained
using approximate dertvatives, keeping the normal fixed in egns (17) between the iterations.
Considerable simplifications of the calculations needed to generate the stiffness matrix from
eqn (6) are obtained. The number of equilibrium iterations required are practically identical
for the two methods.

The stresses are integrated (rom the previous incremiental solution using sub-
increments{22, 23] As noted in Ret! [22], this method can effectively increase the accuracy in
cases where the path followed in strain space is less curved than the path in stress space.
At the beginning of an incremental solution, the equilibrium states at the three previous
increments are used to extrapolate the solution vector containing the nodal degrees of
frecdom with polynomials of the second degree. This gives a better estimate of the new
solution than using the solution at the previous increment, resulting in fewer iterations to
reach a given crror tolerance.

RESULTS

To test the reliability of the numerical procedure, comparison with recent results for
plastic buckling of pressurized circular shells by Huang and Pattillo[24] have becn carried
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Fig. 4. Comparison of present results with plastic buckling results of Ref. [24]. Here v = 0.3,
o, E=1679<10""and R = 8.15. The present result follows the bifurcation branch with high
aceuracy.

out. In Fig. 4 the amplitude of w. in eqns (21) using eqn (22) is plotted against the pressure
for a plane strain ring under external pressure. This mode is identical to the plastic buckling
mode of Ref. [24] and has been initiated by superposition of a circumferentially varying
load. resulting in an additional deflection of 10~ *h.

Of particular interest is 2 comparison between the present results for ring deformation
and those obtained in Refs [12, 15]. Comparing results for increasing N in eqn (21) shows
that the convergence speed in the present formulation is strongly dependent on the choice
of material purameters. For low hardening materials the ring collapses in & mode in which
four plastic hinges form at the symmetry points. Cases where these curvatures are very
high. for which the validity of the shell equations becomes doubttul and the convergence
with V in egn (21) is slow, arc avoided. The yield stress o, and hardening parameter E/E”
in a bilincar uniaxial stress -strain curve are chosen so that N = 6 in egn (21) produces a
solution in global equilibrium within a few percent. A static analysis of a ring scgment gives

M, =M, = (Ri~R})P[2. (25)

The notation is explained in Fig. 5. Within the framework of the analysis, the resultant
moments are identified as

[ 7
M= I gaa0tiz dz. (26)

Now, the material parameters are chosen so that eqn (25) is fulfilied by the numerical
solution within a few percent when using N = 6 in eqn (21).

In Fig. 6 a comparison of the present results and those of Ref. [15] is shown for a
rather thick-walled ring (R/A = 10.5) using deformation theory and a bilincar uniaxial
stress strain curve with o, /£ = 1.4 x 10 Yand E/E’ = 40. Here and in the following v = 0.3,

The small differences in Fig. 6 are believed to be a result of the different models and
the different methods of solution.

Convergence towards the results of Ref. [12] can be seen for a ring with R/h = 40,
6, E=15x10 " and a Ramberg-Osgood uniaxial stress-strain curve with strain hard-
ening exponent n = 10. Using N =6 in eqn (21) and the set of functions (23) gives
PP =0.269, while N=7 gives P,/P, = 0.261. From Fig. 9 in Ref. [12] the value

M
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Fig. 5. Quartersection of ring with resultants.
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Fig. 6 Comparison et the present analysis for plane strain ring deformation with the results of Ret.
[15] for detormation theory. The classical elastic ring buckling pressure is denoted P

P, P =0.251s read. In Fig. 7 the gobal equilibrium of the numerical solutions according
to egn (23) are shown tor increasing deflections in the case ¥V = 7 and for the calculation
shown in Fig. 6, which is obtained using & = 6 and the set of functions (22)

Figure 7 shows that the result tor R//i = 40 may still contain some crrors due to the
discretization, which explains part of the difterence in comparison with Ref. [12]. Since the
results presented below are in global equilibrivim within a higher accuracy than the result,
for R4 = 40,1t is believed that these solutions represent it good accuracy.

Two shells are analysed. Shell |is characterized by the radius to thickness ratio
R 1= 474 and the material parameters o 'f = L4 <10 " and F/7E = 40, Shell U has
R = 143 and the same material parameters as Shell 1 The material is fictitious, but the
R rvalues represent the thinnest and thickest tubes considered in Ref. [12]. The deformation
theory predictions of P, are hsted in Table 1.

In these ring calculations the post-touching part of the pressure vs arca reduction curve
isapproxinuted by a vertical line. This construction, which s analogous to Ref. [12], neglects
a small contribution to the area below the 2, line (Fig. 2), resulting tn an overestimation of
£, ot order % according to Retl [15]. The caleulations for Shell T have been repeated for
different choices of vV and tor cach of the sets of tunctions (22) and (23), giving the results
histed in Tuble 2

These results indicate that eqns (22) are the best choices, but this is not always the
case. Comparison of P, for different shells using the bending strain measures K, and K,
defined carlier results in changes of P, below (1.5% in cases where the strains ot the middle
surfuce are below 0.53%, as s the case for Shells Tand 1

Next, attention will be dirceted towards the path-dependent material model (11), which
requires a description ol the transition between the unbuckled and collapsed zone. At the
boundary v = L (Iig. 3), theconditions . = = w = O are prescribed. At.x = 0 we prescribe
symmetry conditions v = ¢ = »’ = 0. These conditions, however, do not affect the value
P,. since this value is characterized as the pressure at which the buckle runs through the
pipe without influcnce from the boundaries.

1=, - MI/Z(R n;

ooa]
R/h =40
0. OIJ
R/h =105
0 — w(T/2)
0 OL 06 0.8 10 R
i

Fig. 7. Overall equilibrium of numerical solutions according to egn (25).
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Table 1. Deformation theory predictions

of P, using eqns (1) and (2) for two shells

with geometrical and material data given
in the text.

Shell No.
| I

P,ja, 10" 0512 793

Table 2. Comparison of £, for Shell I with different choices of
circumferential discretization

Type of functions (22) 23
N 6 7 6 7
P je, 10 795 7.93 &1 797

A small circumferentially varying load concentrated near x = 0 is superposed on the
hydrostatic load in order to initiate the buckling mode at pressure P,. For a shell of infinite
length that buckles in the elastic range, the value of P, is

E 2y
Pe= = ('ﬁ) @D

corresponding to the buckling mode (u, v, w) = (0, — }sin 2¢, cos 2¢). At increasing defor-
mation, plastic yickding takes place and the ring deformation becomes unstable, the defor-
mation localizes axially. For a shell of finite length, the boundaries initiate the localization
mode, which is also utilized by Tvergaard[25] for cylindrical shells under axial compression,
This, together with the deformation resulting from the superposed load, ensures the local-
zation takes place at x = 0. After this stage of deformation, the superposed load is stepped
down to zero and removed over a few increments. In Fig, 8, characteristic stages during
deformation are depicted on the load vs volume reduction curve together with the associated
shapes of the generator lying in the vertical plane of symmetry.

In the numerical procedure, increments of w(0, n/2) are specified until two opposite
sides touch cach other. Increments of w or w” at ¢ = x/2 are then specified at a point which
is not in contact. The contact is maintained by introduction of the boundary conditions
Wix, /2y = w'(x,.n/2) = 0 in the finite clement equations. Here, x; denotes a nodal point
in contact. The buckle is allowed to spread through one or two axial elements, which is
sufficient for the boundary effects to have died out.

The finite clement results for Shells [ and I, defined earlier, are shown in Fig. 9, with
the results of Table | included.

The calculations are carried out with 16 axial elements, which is believed to represent
a good accuracy, since an cight element solution differs no more than 0.5% on the pressure-

o 3
4 a.vielding x=l *
.3 { ) Ring deformation N
/ ".‘l \
d.Propagation
b.Loca-~ P ql R
Pp lization \
d
T
c.Touching I R
{a) (b)

Fig. 8. (a) Load-volume reduction curve for an externally pressurized circular shell that buckles in

the elastic range. with (b} characteristic shapes of the generator lying in the vertical plane of

symmetry. In order to demonstrate the difference between deformations before and after local-
ization, stage a is exaggerated.
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Fig. 9. Load-volume reduction curve for the finite element flow theory calculations using L = SOR
for Shell T and L = 25K for Shell 1. The deformation theory predictions of P, are included as
broken horizontal lines. The arrows marked b, ¢ and d refer to Fig. 8(b), where the corresponding
deformed states are shown. The arrows marked A and B refer to Figs 10{a) and (b). respectively.

volume reduction curve before touching occurs. Obviously, the type of discretization used
here is not able to represent the contact forces with very high accuracy. Nevertheless, an
cight clement deformation theory calculation gives a prediction of £, only 1.9% above the
prediction from the ring analysis for a shell with R/fr = 14.3.

The flow theory prediction for Shell Tis P /e, 10" = 0.554. This is 8.2% higher than
the deformation theory prediction. For Shell 11 the flow theory prediction, £, a,- 10" = 10.8,
is 36% higher than the deformation theory prediction listed in Table |, These results give
a quantitative description of the influence of non-proportional stress development as the
shell thickness increases. Typical stages of deformation are shown in Fig. 10.

The last part of the pressure -volume reduction curve tor Shell H betore touching
occurs has been repeated, using the bending strain measure K, eqn (24). This gives a
prediction of the load up to 0.99% lower than that using A, The strains of the middle
surface remain below 1% in these cases.

In Fig. 1, the variation of fyy = — X L7 ™4,,/L°" through the thickness at ¢ = 0 is
shown for Shell I at the final stage of propagation. The results from the ring analysis when
touching occurs are included. The strains become quite large in these cases. For this reason
it is of relevance to investigute how scriously the small struin assumption aflects the results.
A simple way to study the effect of performing a three-dimensional analysis, allowing for
large strains, is to compare ring deformation results based on small strain flow theory with
results bused on the finite strain generalization of flow theory. This gives an impression of
the limitations of the small strain material models at the strain levels met. Stll, the pressure
is applicd at the midsurface, and the modelling is valid only for deformations fullilling the
Kirchhol-Love hypothesis and the assumption that Ag is small compured with unity. Here,
g is the maximum principal curvature. For general large strain problems of shells, egns (13)
would normally be rudimentary[26].

Fig. 10. Coordinate lines on the deformed midsurface at stages A and B marked with arrows in
Fig. 9. Duc to the symmetrics only a quartersection is shown.
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0.1
o|ouTeR sureace INNER SURFACE
X N=6
using (22) — Na= } ring analysis
- 01 {o N=6
Fig. 1. Varation of n,, = —X Ly ,/L7*"" (summation over the increments) through the

thickness at ¢ = 0.

Table 3. Predictions of P,/a,- 10" based on the different material

models
Shell No.
1 I
Deformation theory, ring analysis 0.512 7.93
Flow theory, finite element analysis 0.554 10.8
Flow theory, ring analysis 0.513 7.98
Finite strain flow theory, ring analysis 0.514 8.88

First, comparison with two of the results in Larsson et al.[27] will be shown. The plane
strain ring deformation results off Ref. [27] are based on the exact three-dimensional
cquilibrium cquations using a large strain J, corner theory material model, which, for a
perfect ring, should agree well with the flow theory up to the maximum internad pressure.
FFor the aluminium tubes, the maximum pressure in Ref. [27) is P, = 18.0 MPa for
Rilh =9.5und P}, = 37.9 MPafor R/ = 4.5, The present results using K, are P, = 18.6
MPaand P, = 41.4 MPa when the pressure is referred to the inner surface. Errors of this
order of magnitude are expected from the plane stress assumption.

Returning again to the ring calculations for external pressure, the results based on
small strain and finite strain flow theory are shown in Table 3. The flow theory and
deformation theory predictions mentioned carlier are included for comparison. It will be
scen that the results for deformation theory and flow theory in the ring analysis are
practically identical. This shows that unloading is not predicted using small strain flow
theory. For Shell 11 the finite strain calculation of P, is significantly higher than the small
strain flow theory prediction of P, based on the ring analysis. For Shell H the normal strain
variation through the thickness at ¢ = 0 is shown in Fig. 12 when touching occurs. The
results can be compared with the small strain results in Fig. 1. The difference is clearly
that the neutral axis moves towards the compressed side in the large strain formulation.
Assoctated with this effect, some unloading takes place as the ncutral zone moves into
material that has previously yielded, which is also noted by Triantafyllidis ¢r af.[28). An
accurate modelling of the etfect demands a finer discretization than that needed in the small
strain calculations, as can be seen from Fig. 12, Since the strains at the midsurface increase

A ny3
0-11 f_ ::g} ring analysis
OUTER SURFACE INNER SURFACE
-0.1
X
Fig. 12. Variation of n,, = =X L', /L"*"* {(summation over the increments) through the

thickness at ¢ = 0. The material model is a finite strain flow theory.
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as the neutral zone moves away., it is doubtful whether the differences between the material
models can be resolved accurately using classical shell theory.

CONCLUSIONS

In the present work. a method for the theoretical prediction of the propagation pressure
P, for circular tubes is presented. The method is valid for general path-dependent elastic-
plastic material descriptions. Predictions of P, based on /. deformation theory are compared
with predictions based on J; flow theory with isotropic hardening. Besides being illustfative
for the method. such comparisons are often used to investigate the accuracy of results
based on these simple plasticity theories, since experimental results often lie between these
theoretical predictions. The comparisons show that over the range of Rk values considered,
the predictions of P, based on flow theory are between 8 and 36% higher than the predictions
based on deformation theory. In this range of R// values, Chater and Hutchinson{12] have
compared their deformation theory based predictions of P, using eqns (1) and (2) with
experimental results for aluminium tubes. carried out by Kyriakides. The theoretical results
undcrestimated the experimental valucs by 2-25%. In the present work, calculations are
carried out using material parameters that simulate a higher hardening material than the
aluminium specimen, which makes it posstble to obtain numerical results of good accuracy
with few circumferential cxpansion functions. A conclusion drawn from convergence studices
for ring deformation utilizing the fact that any cross-section of the collapsed tube is very
similar to a state of the collapsing ring. In Kyriakides er ol [15], theoretical predictions of
P, based on eqns (1) and (2) are compared with experimental results for both aluminium
tubes and stainless steel tubes showing that the theoretical method is worse for the higher
hardening steel specimen. Making use of this obscrvation when comparing the results of
the present work with the results in Chater and Hutchinson[12], the fow theory predictions
of I, scem to be in better agreement with the experiments. This is due to the fact that most
of the material points experience a slow and smooth change in the stress path during
collapse. It is important, however, to note that the present method of analysis can be used
if comparisons with more sophisticated plasticity theories are required.

A first step towards performing @ complete three-dimensional finite strain analysis is
done, predicting £, from a finite strain constitutive law with the kinematics still restricted
according to the Kirchholt -Love assumption. Tt has been verified that such a formulation
makes sense by comparing numerical results with results from three-dimensional analyses
(sce also Jensen[29]). Based on the fact that any cross-section of the collapsed tube is very
similar to a state of the collapsing ring, investigating the influence of the small strain
assumption on the predictions of P, can be carried out for the ring collapse. For the thinnest
shell considered, the strain levels are below 4% and it has no effect on the calculations when
formulating the constitutive law for finite strains. For the thickest tube, the maximum
strains are roughly threc times greater and the increase in the prediction of £, using a finite
strain constitutive law is 11%. This shows that some improvements of the theoretical
predictions based on egns (1) and (2) are possible, using a three-dimensional finite strain
description. But the influence of non-proportional stressing due to axial bending and
stretching during collapse cannot be incorporated into egns (1) and (2). From the results
of the present finite element calculations, these effects scem to be important for the problem.

The problem analysed is characteristic in that it involves large deformations including
large rotations of an clastic -plastic shell under a configuration-dependent load. To reduce
the amount of computational work, the Kirchhoff-Love assumption is introduced and the
displacements arc expanded in global functions circumferentially rather than using finite
clements. Since few calculations of this type exist in the literature, it has been relevant to
discuss the verification of the solution strategy and the accuracy of the numerical results.
This is done by comparing with carlicr reported results and analytical results, by investigating
the effect of a finer discretization, by checking that convergence towards identical solutions
is observed when different types of expansion functions are used and by checking that a
measure for the error in global equilibrium decreases towards zero for increasingly refined
discretization. A very efficient verification of the solution strategy and the axial discretization
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is to compare predictions of P, based on eqns (1) and (2) with the finite element calculations

of
co

P, for deformation theory. When using eight axial elements the disagreement in the cases

nsidered is between 0.1 and 1.9%.
In this work, the quantitative influence of several effects on the theoretical prediction

of P, is studied. The results presented are based on a choice of a non-linear large rotation
bending strain measure. By checking that results based on an alternative large rotation
bending strain measure gives nearly identical predictions, it is thus rendered that the regime
of validity for these shell theories is not exceeded.
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o4 H. M. Jensen
APPENDIX
Due to Ref. [21]. the components of /(4 a)d,, are generally given by
Vdaydy = —(Dym' —dym) L, —\d " +m )b,
Here
nt = — (L +04) " + (8 =)
mo= 1+ 0+ 10— 0}
Ly =du+dy dy=Du —dyw
Gy = UD = Da). By = YD, + D) —d w

G, =w, +d%y, = D,

(A

(A2)
(A3)
(A4)
(AS)

(A6}

where (), and D ) denote partial and covariant differentiation. respectively, The skew-symmetric surfuce
permutation tensor is denoted . For the cylindrical middle surface in Fig. 3, w, = w and 1, = Re. In this case

the components of d,, take the form of eqns (17).



